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Photoclinometry is the most common method used to obtain high-resolution topographic maps of plan-
etary terrain. We derive the likelihood function of photoclinometric surface slope from (1) the probability
distribution of the measured photon count of natural sunlight through a Charge-Coupled Device (CCD)
including uncertainty due to camera shot noise, camera read noise, small-scale albedo fluctuation and
atmospheric haze, and (2) a photometric model relating photocount to surface orientation. We then
use classical estimation theory to determine the theoretically exact biases and errors inherent in photo-
clinometric surface slope and show when they may be approximated by asymptotic expressions for suf-
ficiently high sample size. We show how small-scale albedo variability often dominates biases and errors,
which may become an order of magnitude larger than surface slopes when surface reflectance has a weak
dependence on surface tilt. We provide bounds on the minimum possible error of any unbiased photo-
clinometric surface slope estimate, and compute the sample sizes necessary to constrain errors within
desired design thresholds.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

High-resolution elevation maps of planetary terrain are typi-
cally obtained by the method of photoclinometry (e.g. Malin
et al., 1992; McEwen et al., 2003; Kirk et al., 2003b; Schenk,
2005), which relates variations in surface radiance to variations
in surface orientation relative to the light source, typically the
Sun, and the optical receiver, typically on a spacecraft (Davis and
Soderblom, 1984; McEwen, 1991; Kirk et al., 2003a). While other
methods also exist to produce topographic models, including stere-
ogrammetry and radar altimetry, photoclinometry offers signifi-
cant advantages since it (1) requires only a single image, and (2)
can provide higher resolution measurements (McEwen, 1991).

It has been observed, however, that photoclinometry may not
work very well under certain lighting conditions that provide little
topographic contrast, and that these conditions typically corre-
spond to small incidence angles (e.g. Davis and McEwen, 1984;
Efford, 1991; Jankowski and Squyres, 1991; Kirk et al., 2003a,b).
Uncertainties in surface albedo may also lead to errors in surface
slope estimates that are significant for small-scale albedo varia-
tions (Howard, 1982; Kirk et al., 2003b), but become relatively
insignificant for large-scale albedo variations (e.g. Beyer et al.,
2003).
ll rights reserved.
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The primary purpose of the present paper is to provide a formu-
lation of uncertainties and analysis of errors that (1) is consistent
with the behavior of the likelihood function (Fisher, 1956) of the
photoclinometric surface slope estimate that governs the uncertain-
ties, and (2) accounts for all the primary photoclinometric error
sources, including albedo, haze, camera read noise and camera shot
noise, in a unified manner. Here, classical estimation theory
(Fisher, 1956; Kay, 1993) is used to provide a method for determin-
ing both the exact and asymptotic biases and errors inherent in a
Maximum Likelihood Estimate (MLE) of photoclinometric surface
slope given the probability distribution of the measured Charge-
Coupled Device (CCD) data and the nonlinear physical model relat-
ing the measured CCD data to surface slope by planetary surface
reflectance (e.g. McEwen, 1991). The formulation also provides
bounds on the minimum possible error for any unbiased photoclino-
metric estimate of surface slope as well as necessary conditions on
sample size to attain this error bound, or a desired design threshold
on error. The asymptotic biases and errors are determined by series
expansion in inverse orders of sample size, where higher order terms
vanish in decreasing order as uncertainty decreases until the
Cramer–Rao Lower Bound (CRLB) or first-order error term is
attained (Naftali and Makris, 2001). Since approximations to inves-
tigate photoclinometric errors (e.g. Davis and McEwen, 1984; Efford,
1991; Jankowski and Squyres, 1991; Beyer et al., 2003; Kirk et al.,
2003a,b) have previously not been formulated in terms of the likeli-
hood function that governs uncertainties, error bounds, asymptotic
behavior for decreasing uncertainty, necessary sample sizes, and
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exact theoretical biases and variances have not been previously pro-
vided. We show that in many practical photoclinometric scenarios
the approximate asymptotic biases and errors for a single sample
differ dramatically from the exact ones, making asymptotic expres-
sions for errors applicable only when a large number of independent
samples is available. Moreover, the asymptotic expressions for er-
rors must be formulated in terms of the likelihood function as in
Shenton and Bowman (1977), Barndorff-Nielsen and Cox (1994),
McCullagh (1987), and Naftali and Makris (2001) for them to prop-
erly converge as uncertainty decreases or sample size increases.

In Section 2 we derive the likelihood function, the MLE and
biases and errors for photoclinometric surface estimation. The
MLE is chosen because it is known to become asymptotically unbi-
ased and attain the minimum possible mean square error of any
unbiased estimate as sample size becomes large or uncertainty be-
comes small (Rao, 1966; Fisher, 1956). In Section 3 we compute the
exact theoretical biases and root mean square errors of the surface
slope MLE for various photometric functions and typical values of
camera read noise, camera shot noise, atmospheric haze, and albe-
do variability. We show that the biases and root mean square er-
rors grow rapidly when the dependence of measured intensity on
surface slope approaches a constant, and that albedo variability
is typically the dominant source of biases and errors. We also pres-
ent estimation methods for minimizing these biases and errors to
obtain surface slope estimates that fall within desired design error
thresholds.
resolved
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Fig. 1. Resolved surface element with slope h to flat topography. The slope, or tilt h
is the angle suspended between the z-axis and the surface normal, measured
2. The likelihood function and maximum likelihood estimation
of planetary surface slopes

In photoclinometry, natural light from a thermal source, such as
the Sun or a star, typically acts as the source of planetary surface
illumination. Natural light is known to undergo Circular Complex
Gaussian Random (CCGR) field fluctuations and exponentially dis-
tributed instantaneous intensity fluctuations, as a consequence of
the central limit theorem (Goodman, 1985, Chapter 4). Spacecraft
observations of planetary surfaces are typically made with pho-
ton-counting CCD cameras (e.g. Malin and Edgett, 2001; McEwen
et al., 2003), where the number of detected photons is known to
follow the conditional Poisson probability distribution for a given
average light intensity. Since the average intensity of natural light
follows a Gamma distribution, conditional integration over all pos-
sible intensities leads to the negative binomial distribution for the
photocount (Goodman, 1985, Chapter 9).

Photocount is related to planetary surface orientation by mod-
eling the reflectance properties of the planetary surface with a
photometric function. Many planetary surfaces have been success-
fully modeled with one or a combination of a such closed-form
empirical functions, including Lambert’s law, Minnaert’s law, and
the lunar-Lambert model (McEwen, 1991).

In this section, we discuss three common photometric functions
used to model planetary surface reflectance. We then use classical
estimation theory to derive the likelihood function and MLE for
photometric surface slope estimation, the theoretical lower bound
on surface slope error, and necessary conditions on sample size to
appropriately constrain biases and errors within desired design er-
ror thresholds.
counter-clockwise. All other angles are measured counter-clockwise from the z-axis
or the surface normal direction, as indicated by subscript z or n respectively. The
true incident angle is equal to the angle between the z-axis and the incident
direction, iz , minus surface slope, h, or in ¼ iz � h. Similarly, the true emission angle
is equal to the angle between the z-axis and the emission direction, �z , minus
surface slope, h, or �n ¼ �z � h. Specular reflection occurs when �n ¼ �in . Given
known angles iz and �z , photoclinometry can be used to obtain an estimate of the
unknown surface slope h.
2.1. Photometric functions of planetary surface reflectance

The most commonly used photometric function in planetary
topography applications is the lunar-Lambert function first intro-
duced by McEwen (1986),
Iðln;l0n;aÞ ¼ BoðaÞ 2LðaÞl0n

ln þ l0n
þ ð1� LðaÞÞl0n

� �
ð1Þ

where Iðln;l0n;aÞ is the reflectance function, ln ¼ cos �n; l0n ¼
cos in, and �n; in are the emission and incidence angles respectively,
as shown in Fig. 1. The phase angle a corresponds to the angle be-
tween the incidence and emission angles, and BoðaÞ ¼ Ið1;1;aÞ is
defined as the intrinsic albedo. L(a) is the ratio of the lunar to the
Lambertian component in the lunar-Lambert function, so that in
the limit L(a) ? 0 the modeled surface is Lambertian, while in the
limit L(a) ? 1, the surface is lunar. The photometric function is
the ratio of the intensity incident at angle in to that reflected to
the receiver at emission angle �n.

For many planetary surfaces and phase angles, L(a) can be well
approximated as a constant L, especially when observations are
made over a limited range of incidence angles. Beyer et al.
(2003), for example, show that variations in L for martian terrain
lead to small errors of 10% of the L ¼ 0:55 mean for Mars Orbiter
Camera (MOC) (Malin and Edgett, 2001) incident angles in the
vicinity of 25–45�. Similarly, the effect of large-scale albedo varia-
tions, i.e. changes in the value of BoðaÞ across the planetary terrain,
can be minimized by scaling out the average brightness of the im-
aged region (Beyer et al., 2003). Small-scale variations in albedo
cannot be similarly accounted for and may lead to much larger er-
rors (Howard, 1982; Kirk et al., 2003b; Beyer et al., 2003). Here we
model BoðaÞ as a Gaussian random variable based on a central limit
theorem assumption of many independent sources of albedo vari-
ation. The mean is set to the average albedo value across the im-
aged region and the standard deviation is defined as proportional
to a fraction of the mean following calculations presented by Bell
et al. (2008) for typical martian surfaces.

The illumination and zenith direction vectors define the princi-
pal plane (e.g. Ranson et al., 1991, Fig. 1). It is common in planetary
applications for satellite cameras to be close to nadir-looking, so
that the difference between the emission angle and its projection
on the principal plane is negligible. Assuming that local surface
slopes are always in the up- or down-sun direction, which is also
the direction where reflectance is most sensitive to slope changes
for a Lambertian surface or small emission angles in the lunar-
Lambert model of Eq. (1) (e.g. Beyer et al., 2003; Kirk et al.,
2003b), the emission and incidence angles can then be written in



Fig. 2. Lambertian photometric function given constant albedo, Eq. (3) using L ¼ 0.
(a) 3D representation of the value of Eq. (3) for L ¼ 0 as a function of surface slope h,
which is the parameter to be estimated, and incident angle with respect to flat
topography iz . The emission angle �z is assumed to be zero so that the satellite is
nadir-looking. The black lines correspond to lines of constant true incident angle,
in ¼ iz � h. The regions beyond the jinj ¼ 90� lines correspond to incidence on the
‘back’ of the surface patch, so that nothing is reflected towards the receiver and
I ¼ 0. Superimposed on the plot is the curve along which the derivative of I with
respect to h is zero (white dashed line). Also shown is the line that corresponds to
specular reflection, �n ¼ �in (white dot-dashed line). The plot can also be
interpreted as a sheared and rotated version of the plot of I versus true incident
and emission angle, in and �n respectively. (b) Three cuts along constant values of
incident angle to flat topography, iz , for the same photometric function. Each curve
is obtained by cutting along the corresponding white dotted line in Fig. 2a from
right to left.
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terms of slope h with respect to a flat surface, �n ¼ �z � h and
in ¼ iz � h. Here iz and �z are defined as the known angles that
the incident and emission directions make to the zenith direction,
respectively.

With these assumptions, the photometric function can be writ-
ten as

Iðln;l0n;aÞ � IðhÞ ¼ Bof ðhÞ ð2Þ

where

f ðhÞ ¼ L
cosðiz � hÞ

cos izþ�z
2 � h

� �
cos iz��z

2

� �þ ð1� LÞ cosðiz � hÞ
" #

ð3Þ

Surface slope h can be estimated from knowledge of IðhÞ. While sur-
face slopes will be underestimated if their azimuth does not lie in
the principal plane, this error is found to be negligibly small for rel-
atively flat topography, as are errors introduced when the satellite
viewing direction is off the principal plane (Beyer et al., 2003).

Eq. (3) is plotted as a function of surface slope h and incident angle
with respect to flat topography iz for the parameter L set to 0, 1, and
0.55 in Figs. 2a, 3, and 4a, respectively. The case L ¼ 0:55 is shown
here as an appropriate choice for martian terrain (Beyer et al.,
2003). For other planetary bodies, McEwen (1991) provides best-fit
LðaÞ values for various terrain types. The angle of emission with re-
spect to the z-axis is assumed to be �z � 0�, which is equivalent to
the typical case of a nadir-looking satellite, so that the true emission
angle is �n ¼ �h. In all three figures, white dashed lines highlight
where the derivative of I with respect to h is zero so that the depen-
dence of the CCD measurement on surface slope is constant. White
dot-dashed lines correspond to the direction of specular reflection,
which in this case occurs when in ¼ ��n ¼ h, or equivalently
iz ¼ in þ h ¼ 2h. Finally, black lines denote lines of constant true inci-
dence angle, in, which are described by the equation iz ¼ hþ in, so
that their slope and y-intercept are 1 and in, respectively.

The Lambertian photometric function of Eqs. (2) and (3) for L ¼ 0
is symmetric about the line where the true incidence angle in equals
zero, which is also where dI=dh is zero, as a consequence of Lambert’s
cosine law, and as can be seen in Fig. 2a. The lunar photometric
function of Eqs. (2) and (3) for L ¼ 1 is instead antisymmetric about
the direction of specular reflection, while its derivative with respect
to surface slope goes to zero when the incident and emission direc-
tions become collinear, as can be seen in Fig. 3a. For the lunar-Lam-
bert photometric function of Eqs. (2) and (3) for L ¼ 0:55, the
dI=dh ¼ 0 curve (white dashed line) is close to the in ¼ 0 line for
small tilt angles h, while it gradually moves towards the iz ¼ 0 line
as h increases, as can be seen in Fig. 4a. For the martian example of
L ¼ 0:55, and for small tilt angles, the lunar-Lambert surface then
approaches Lambert’s cosine law, but becomes similar to a lunar
surface as the surface slopes become larger.

The Lambertian, lunar and lunar-Lambert photometric func-
tions are also plotted as functions of the true incidence angle
in ¼ iz � h, for different values of the angle between the illumina-
tion direction and the zenith direction, iz, in Figs. 2b, 3 and 4b.
These plots are constructed by cutting along the white dotted lines
of Figs. 2a, 3 and 4a from right to left. Again, we note that the Lam-
bertian photometric function depends only on the value of the true
incidence angle in, while the lunar photometric function becomes
independent of surface slope when the incident and emission
directions are collinear.

2.2. The probability distribution of CCD photocount measurements of
planetary surface reflectance

Charge-Coupled Devices (CCDs) typically form the basic
recording unit of the high-performance cameras used for space
exploration missions (e.g. Malin and Edgett, 2001; McEwen et al.,
2003) by measuring the number of electrons released from a
photosurface when an electromagnetic field is incident upon it.
This number is linearly proportional to the number of incident
photons, which in turn is a function of the average light intensity
incident on the photosurface (Janesick, 2001, Chapter 6), so that
the CCD output signal can be parameterized in terms of average
intensity.

Natural light from thermal sources, such as the Sun, is known
to follow Circular Complex Gaussian Random (CCGR) field



Fig. 3. The same as Fig. 2 for the lunar photometric function given constant albedo,
Eq. (3) using L ¼ 1.

Fig. 4. The same as Fig. 2 for the lunar-Lambert photometric function given
constant albedo, Eq. (3) using L ¼ 0:55, which is a typical value when modeling the
reflectance of martian terrain.
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fluctuations by the central limit theorem, so that average intensity
is described by the Gamma distribution (Goodman, 1985, Chapter
9). Since the number of photon arrivals for a given light intensity is
known to be a Poisson random variable, the statistics of CCD-mea-
sured photocount then follow the negative binomial distribution
(Goodman, 1985, Chapter 9). For thermal light at optical frequen-
cies, and for the common integration times of CCDs (e.g. Malin
and Edgett, 2001), the discrete negative binomial distribution can
be well approximated by the continuous Gaussian probability den-
sity (see Appendix A),

PKðKjhÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rKðhÞ
exp �1

2
K � KðhÞ
rKðhÞ

" #2
0@ 1A ð4Þ

where K is the measured photocount.
The mean and variance of K have been derived in Appendix A

(Eqs. (34) and (35)) and are repeated here for convenience

K ¼ c½IðhÞ þ H� ¼ c½Bof ðhÞ þ H� ð5Þ
r2

K ¼ K þ K2r2
Bo

�
Bo2 þ r2

R ð6Þ
where c is a known proportionality constant that depends on inci-
dent solar flux, camera integration time, pixel surface area and
other parameters as described in Eq. (20), Bo; r2

Bo are the mean
and variance of surface albedo, respectively, and H is the expected
intensity of atmospheric haze which is assumed to be a known con-
stant (e.g. Beyer et al., 2003). Atmospheric haze is described by a
CCGR field that is independent and additive to the CCGR field scat-
tered from the surface which carries reflectance information. The
variances or expected intensities of these two fields then add, so
that the haze contribution increases the mean and variance of the
photocount K. This leads to a dilution of surface reflectance infor-
mation in the total photocount. Atmospheric haze often contributes
minimally to topographic shading (e.g. Beyer et al., 2003). Kirk et al.
(2001) provide a model for how haze is affected by changes in
atmospheric conditions and illumination geometry.

The photocount variance then has signal-independent compo-
nents due to camera read noise r2

R (Janesick, 2001, Chapter 7),
and atmospheric haze r2

haze � cH, and signal-dependent compo-
nents cBof ðhÞ for shot noise and K2r2

Bo=Bo2 for albedo uncertainty.
The signal-dependent components arise from the Poisson nature of



Fig. 5. Absolute value of the bias and Root Mean Square Error (RMSE) (Eqs. (11)–
(14)) of the Maximum Likelihood Estimate (MLE) of surface slope for the
Lambertian photometric function of Fig. 2 given typical values for the different
sources of noise: (i) CCD camera read noise, r2

R � 6400 electrons, (ii) CCD camera
shot noise, K � Oð104Þ electrons, (iii) atmospheric haze, r2

haze � 2000 electrons, and
(iv) albedo variability, rBo ¼ 0:1� Bo (see Appendix A). (a) Bias as a function of
incident angle with respect to flat topography iz , and true surface slope h. (b) RMSE
as a function of iz and h.

Fig. 6. The same as Fig. 5 for the lunar photometric function of Fig. 3.

Fig. 7. The same as Fig. 5 for the lunar-Lambert photometric function of Fig. 4.
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photon statistics, the CCGR fluctuations of the incident field, and
the multiplicative dependence of the photometric function on al-
bedo. By defining the Signal to Noise Ratio (SNR) of K � cH, or a
sample mean of n independent and identically distributed mea-
surements of K � cH, as the ratio of the squared mean to variance,
SNR is proportional to sample size n. It also becomes large as the
mean photocount becomes large and the standard deviation of al-
bedo becomes small compared to the mean albedo.

2.3. Maximum likelihood estimation

The likelihood function for an estimate of h is defined as PKðKjhÞ
evaluated at the measured values of K, where PKðKjhÞ is the condi-
tional probability distribution of a data vector K of independent
and identically distributed photocount measurements K1;K2;K3;

. . . ;Kn obeying Eqs. (4)–(6), given surface slope parameter h. Mea-
surements of random photocount, in the vector K, then contain
information about surface slope h through both the mean and var-
iance of the photocount via Eqs. (1)–(6). The MLE ĥ is defined as the
surface slope that maximizes the likelihood function with respect
to h (Rao, 1966; Fisher, 1956). The Cramer–Rao Lower Bound
(CRLB) is the minimum mean square error attainable by any unbi-

ased estimate, regardless of the method of estimation. The CRLB i�1

is the inverse the Fisher information, also known as the expected

information, which is defined as i ¼ hl2
1i, where lðKjhÞ ¼ ln PKðKjhÞ

is the log-likelihood function, and lj ¼ @j lðKjhÞ
@hj .

If the sample size n is sufficiently large, or uncertainty is suffi-
ciently small, the MLE ĥ is asymptotically unbiased and obeys the
Gaussian distribution

PĥðĥjhÞ ¼
ffiffiffiffiffiffiffi
i

2p

r
exp � i

2
ĥ� h
� 	2


 �
ð7Þ

with variance i�1 equal to the CRLB (Rao, 1966; Kay, 1993), where
(Makris, 1995, 1996)



Fig. 8. Necessary sample sizes to obtain an unbiased estimate of planetary surface
slope and for an unbiased estimate to attain the minimum possible RMSE. The
planetary surface reflectance is assumed to follow the Lambertian photometric
function of Fig. 2. (a) 10log10 of the necessary sample size for an unbiased estimate ĥ
as a function of incidence angle to flat topography iz , and true surface slope h
computed using Eqs. (9) and (41). (b) 10log10 of the necessary sample size for an
unbiased estimate to attain the minimum possible RMSE as a function of iz and h
computed using Eqs. (10), (42) and (43). The white dashed line indicates the curve
along which the derivative of the photometric function with respect to the
estimated parameter h is zero and the necessary sample sizes approach infinity.

Fig. 9. The same as Fig. 8 for a planetary surface that can be modeled using the
lunar photometric function of Fig. 3.

Fig. 10. The same as Fig. 8 for a planetary surface that can be modeled using the
lunar-Lambert photometric function of Fig. 4, where L ¼ 0:55.
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i ¼ n
1
r2

K

@K
@h

 !2

þ 1
2

@ lnðr2
KÞ

@h


 �2
0@ 1A

¼ n
r2

K

@K
@h

 !2

1þ 1
2r2

K

1þ 2K
r2

Bo

Bo2

� �2
 !

ð8Þ

given the probability distribution for K described in Eqs. (4)–(6) and
Appendix A, Eq. (33). In the deterministic limit n!1, where K is
obtained from exhaustive sample averages, PĥðĥjhÞ becomes the del-
ta function dðĥ� hÞ.

In photoclinometry, surface slope estimates are obtained from
single images, so the sample size is actually n ¼ 1 and the MLE of-
ten will be biased and not attain minimum variance. The necessary
sample sizes for the MLE to become effectively unbiased and have
a Mean Square Error (MSE) that asymptotically attains the CRLB are
derived in Appendix B and appear in Eqs. (39) and (40). For
convenience, we define the necessary minimum sample size, nb,
to obtain an unbiased MLE by conservatively requiring that the
first-order bias b1 (Eq. (41)) be 10 times smaller than the true value
of the parameter,

nb ¼ 10
b1 ĥjh
� 	��� ���
jhj ð9Þ

Similarly, the necessary minimum sample size, nv , for the MSE of an
unbiased estimate to attain the CRLB is defined by requiring that the
second-order variance var2 (Eq. (43)) be 10 times smaller than the
CRLB,
nv ¼ 10
var2 ĥjh

� 	��� ���
var1 ĥjh

� 	 ð10Þ



Fig. 11. Absolute value of the first-order bias and the square root of the CRLB, Eqs. (41)
and (42), respectively, of the Maximum Likelihood Estimate (MLE) of surface slope for
the lunar-Lambert photometric function. (a) First-order bias as a function of incident
angle with respect to flat topography iz , and true surface slope h. (b) Square root of the
CRLB as a function of iz and h. The white dashed line indicates the curve along which
the derivative of the photometric function with respect to the estimated parameter h
is zero and the asymptotic biases and errors approach infinity.

Fig. 12. The same as Fig. 4 for an emission angle �z ¼ 20�. Again, the regions beyond
the jinj ¼ 90� lines correspond to incidence on the ‘back’ of the surface patch, so that
nothing is reflected towards the receiver and I ¼ 0. Note the axes are shifted
compared to Fig. 4 to ensure the emission direction never lies behind the surface
patch.
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where var1 ¼ i�1 is the CRLB (Eq. (42)). In the asymptotic limit as
uncertainty decreases, the conditions in Eqs. (9) and (10) can also
be interpreted in terms of the SNR necessary to obtain an unbiased
MLE that attains the CRLB.

3. Results and discussion

In this section we calculate the exact theoretical biases and er-
rors of photoclinometric surface slope estimates for photometric
functions following Lambert’s law, Minnaert’s law, the lunar-Lam-
bert model, for a typical martian surface imaging scenario (see
Appendix A) using the statistical formulation of Section 2.3 and
the Appendices.

To calculate the exact theoretical bias and Root Mean Square
Error (RMSE) of a MLE surface slope estimate ĥ it is useful to ob-
serve that for K ¼ gðhÞ and h ¼ g�1ðKÞ, it follows that ĥ ¼ g�1ðbK Þ
by invariance of the MLE (Kay, 1993), where bK ¼ K is the MLE of
the mean photocount K . The bias and RMSE of ĥ are then given by

biasðĥÞ ¼ h� hĥi ð11Þ

RMSEðĥÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bias2ðĥÞ þ varðĥÞ

q
ð12Þ

where

hĥi ¼
Z 1

0
g�1ðKÞPKðKjhÞdK ð13Þ

varðĥÞ ¼
Z 1

0
g�1ðKÞ � hĥi
� 	2

PKðKjhÞdK ð14Þ

for the conditional probability distribution defined in Eqs. (4)–(6).
The exact theoretical bias and RMSE are calculated using Eqs.
(11)–(14) for the combined effects of all variance terms in Eq. (6)
assuming r2
R � 6400 electrons, K � Oð104Þ electrons, r2

haze � 2000
electrons, and rBo ¼ 0:1� Bo as discussed in Appendix A. Results
are shown as a function of the incident angle with respect to the ze-
nith direction, iz, and true surface slope h in Figs. 5–7.

Both the bias and RMSE of the surface slope estimate increase
significantly in the region where the first derivative of I with re-
spect to h goes to zero, and the measurement becomes ‘insensitive’
to the parameter to be estimated. For the Lambertian photometric
function (Fig. 5) the worst errors then occur along the in ¼ 0 line, a
consequence of Lambert’s cosine law, as expected from Fig. 2. For
the lunar photometric function (Fig. 6), the bias and variance of
the estimate are worst along the line iz ¼ �z, where the incident
and observation directions become collinear, as noted in Fig. 3. Fi-
nally, the worst bias and errors for the lunar-Lambert photometric
function (Fig. 7) occur along a curve that lies in the region between
the in ¼ 0 and iz ¼ �z curves, depending on the exact weighting be-
tween the Lambertian and lunar functions. By using the full likeli-
hood function for the surface slope estimate ĥ, we find that



Fig. 13. The same as Fig. 7 for an emission angle �z ¼ 20�.

Fig. 14. The same as Fig. 10 for an emission angle �z ¼ 20�.
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previous approximations to the biases and errors typically under-
estimated their true values by as much as 50%, as can be seen by
comparing for example the error ranges shown in Fig. A4a of
Jankowski and Squyres (1991) to those presented in Fig. 7. The
first-order error term of Jankowski and Squyres (1991), for exam-
ple, is based on an implicit assumption of additive signal-indepen-
dent noise, and so is not consistent with the dominant sources of
photoclinometric noise, albedo and camera shot noise, which are
multiplicative and signal-dependent, and does not equal the first-
order term expected from estimation theory, the square root of
the CRLB (Eq. (42)).

Since the bias and RMSE for the lunar-Lambert photometric
function may be as large as 10� or more when the incident angle
with respect to the zenith direction, iz is less than 20� (Fig. 7),
obtaining optimal estimates may then necessitate averaging over
statistically independent measurements. Here, an optimal estimate
is defined as one that is unbiased (or has a bias that is negligible
compared to the true value of the parameter), and its RMSE attains
the specified design threshold. Statistically independent samples
can be obtained, for example, by measuring surface radiance under
different illumination and/or observation conditions, or by estimating
surface slopes over larger regions that can be divided into statisti-
cally independent and identically distributed sub-regions. When
averaging over a spatial region, the correlation area of albedo var-
iability will limit the total number of statistically independent
samples available in that region to the ratio of the total area of
the region to the correlation area. The number of samples N neces-
sary to attain the design threshold is given by

ffiffiffiffi
N
p
¼ RMSEðĥÞ

design threshold
ð15Þ

By calculating the sample sizes necessary to asymptotically ob-
tain optimal estimates, we find that, while one sample appears to
be enough for most illumination conditions, the required number
of samples increases significantly in the region of the dI=dh ¼ 0
curve. The necessary sample sizes are computed using Eqs. (9),
(10), and (41)–(43), and shown in Figs. 8–10. In each figure, the
white dashed line denotes the curve where dI=dh goes to zero
and more than 104 samples are typically required to obtain an esti-
mate that asymptotically becomes unbiased and has a RMSE that
attains the square root of the CRLB. In Figs. 8a and 10a, a ridge oc-
curs at h ¼ 0, where the denominator vanishes according to our
definition for nb (Eq. (9)).

Fig. 11 shows the first-order bias (Eq. (41)) and the square root
of the CRLB (Eq. (42)) for the lunar-Lambert photometric function
of Eqs. (2) and (3) using L ¼ 0:55. We find that these asymptotic
biases and variances differ dramatically from the exact theoretical
values, as can be seen by comparing Fig. 11 to Fig. 7. This is espe-
cially evident in two regimes: (1) at large incidence angles, larger
than typically 10�, where the asymptotic biases and errors go to
zero, and (2) at small incidence angles, where the asymptotic
biases and errors very rapidly approach infinity as dI=dh goes to
zero along the white dashed lines in Fig. 11. In the special case
when nv samples are available, the RMSE equals the square root
of the CRLB. Even then, the CRLB may still be larger than the design
threshold, in which case a total of N ¼ nv � n0 samples would be
necessary, where

ffiffiffiffi
n0
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
CRLB
p

=ðdesign thresholdÞ.
One way of obtaining more independent samples is to tilt the

satellite camera to an off-nadir direction. For example, consider
the case where the emission direction is at an angle of 20� to the
zenith direction, but still lies in the solar plane as defined in
Fig. 1 and Section 2.1. The photometric function, the bias and RMSE
(Eqs. (11)–(14)) of the MLE, and the necessary sample size condi-
tions for this case are shown in Figs. 12–14.

Comparing Figs. 7 and 10 to Figs. 13 and 14, respectively, we
find that rotating the camera significantly affects the bias and
RMSE, as well as the sample size necessary to obtain an optimal
surface slope estimate for given values of iz and h. This example



Fig. 15. Absolute value of the bias (Eqs. (11) and (13)) of the MLE of surface slope for the lunar-Lambert photometric function, given typical values for the different sources of
noise: (i) CCD camera read noise, r2

R � 6400 electrons, (ii) CCD camera shot noise, K � Oð104Þ electrons, (iii) atmospheric haze, r2
haze � 2000 electrons, and (iv) albedo

variability, rBo ¼ 0:1� Bo (see Appendix A). The emission angle is again assumed to be zero, and L ¼ 0:55. The total bias has been shown in Fig. 7a.

Fig. 16. RMSE (Eqs. (12)–(14)) of the MLE of surface slope for the lunar-Lambert photometric function, given typical values for the different sources of noise: (i) CCD camera
read noise, r2

R � 6400 electrons, (ii) CCD camera shot noise, K � Oð104Þ electrons, (iii) atmospheric haze, r2
haze � 2000 electrons, and (iv) albedo variability, rBo ¼ 0:1� Bo (see

Appendix A). The emission angle is again assumed to be zero, and L ¼ 0:55. The total RMSE has been shown in Fig. 7b.
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Fig. 17. Horizontal cuts along iz ¼ 12� in Figs. 7, 15 and 16. The bias and error due
to small-scale albedo variability such that rBo ¼ 0:005� Bo, as well as the total bias
and error in this case are also shown.
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then suggests that carefully designed off-nadir viewing may pro-
vide an opportunity for reducing surface slope biases and errors
when combined with nadir images.

Depending on the exact experimental conditions, it may be pos-
sible to specify a general strategy where an optimal estimate can
be obtained from a single sample. For example, for the two cases
of the lunar-Lambert function presented here (Figs. 4 and 12),
requiring jizj > 30�, and jizj > j�zj þ 20� will allow optimal esti-
mates to be obtained for most values of h. These two conditions
are less stringent than the jizj � 60—75�, which is typically speci-
fied as the optimal regime for photoclinometry (e.g. Davis and
McEwen, 1984; Jankowski and Squyres, 1991), where the upper
limit typically stems from the need to avoid shadows which are
not amenable to investigation. The results presented here (Figs.
5–7 and 13) suggest that photoclinometry may work equally well
even at shallower incidence angles.

3.1. Comparison of the different sources of noise or uncertainty

Here, we examine the biases and errors due to each source of
noise or uncertainty described in Section 3 acting in the absence
of the others. Specifically, biases and errors are calculated with
Eqs. (11)–(14) by replacing Eq. (6) with only the variance term
for either (i) read noise, (ii) shot noise, (iii) atmospheric haze, or
(iv) albedo variability for each respective case.

As expected, the biases and errors for each noise source increase
significantly in the region where the reflectance function has weak
dependence on surface slope, as shown in Figs. 15 and 16. The total
bias and RMSE for all these error sources has been shown in Fig. 7.
Biases often dominate the RMSEs.

We find that albedo variability is typically the dominant source
of biases and errors, on the order of 10–20� or more at small inci-
dence angles (in smaller than roughly 10�), as can be seen from
Fig. 15d. Camera shot and read noise are the next most important
noise sources, leading to biases and errors on the order of 5�
(Fig. 15a and b). Finally, haze appears to be the least significant
source of noise, resulting in biases and errors that are typically
on the order of 1–2�, or approximately an order of magnitude smal-
ler than those due to albedo variability, as can be seen from
Fig. 15c. This last result is in agreement with previous literature
(Kirk et al., 2003b), where errors due to haze have typically been
found to comprise less than 20% of the total error when accurately
modeled. Note however that haze effects may increase signifi-
cantly in magnitude during dust storms (Cantor et al., 1999).

Since the ratio of the albedo to the shot noise contribution of the

photocount variance from Eq. (6) is K r2
Bo

Bo2, we expect that albedo noise

should dominate the variance of the photocount K if the standard
deviation of albedo uncertainty is larger than 1ffiffiffi

K
p times the mean al-

bedo, or roughly 1% of the mean albedo for the mean photocount
used here of K � Oð104Þ, given sufficiently low read and haze noise
contributions. This is indeed found to be the case in Figs. 15 and 16
where rBo ¼ 0:1� Bo, for our typical martian scenario. For much
lower albedo uncertainty of rBo ¼ 0:005� Bo, as reported for Miran-
da (Hillier et al., 1989), the total bias and error are instead dominated
by shot noise, which can be seen by comparing the black dashed lines
to the gray dash-dotted lines in Fig. 17 which shows a cut through
Figs. 7, 15 and 16 along the line iz ¼ 12�.

4. Conclusions

Both theoretically exact and asymptotic biases and errors inher-
ent in photoclinometric estimation of planetary surface orientation
from Charge-Coupled Device (CCD) measurements are calculated
using an approach developed from classical estimation theory.
The approach can be used to determine the accuracy of topo-
graphic reconstructions and aid in experimental design.

The likelihood function governing statistical fluctuations of a
photoclinometric slope estimate is derived, including uncertainty
due to camera shot noise, camera read noise, small-scale albedo
fluctuations and atmospheric haze. The derivation incorporates
common photometric models of planetary surface reflectance
and the known probability distributions of CCD measurements of
natural light. From this, bounds on the minimum mean square er-
ror of any unbiased estimate of photoclinometric surface slope are
derived, as are necessary conditions to attain these bounds and
constrain errors within desired design thresholds. Approximate
asymptotic biases and errors for low uncertainty (1) are formu-
lated in terms of the likelihood function to insure proper conver-
gence with decreasing uncertainty, and (2) typically differ
dramatically from the exact ones, making them applicable only
when a large number of independent samples is available. Biases
and errors are shown to typically become much larger than surface
slopes for illuminations and observations where planetary reflec-
tance is weakly dependent on surface slope, near inflection points
of the photometric function.

The approach developed here provides a unified method for
quantitatively comparing the biases and errors from different
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sources of uncertainty in a photoclinometric estimate. Albedo var-
iability, for example, is shown to typically dominate estimate
biases and errors when the standard deviation of albedo uncer-
tainty is larger than approximately 1ffiffiffi

K
p times the mean albedo in

the imaged region, for CCD photocount K, while other error sources
such as shot noise may become dominant for very low albedo
uncertainty.

Appendix A. Statistics of CCD measurements of surface
reflectance

We show that a CCD photocount measurement, K, of planetary
surface reflectance from a natural light source approximately fol-
low a Gaussian distribution. The derivation incorporates surface al-
bedo variability, as well as CCD camera read and shot noise, and
atmospheric haze noise. The number of photoevents K recorded
by CCD cameras is directly proportional to incident intensity
(Janesick, 2001). The averaged intensity incident on a photosurface
of area A in the time interval ðt0; t0 þ sÞ is a random variable

WjBo ¼ 1
sA

Z Z Z t0þs

t0

Iðx; y; tjBoÞdt dxdy ð16Þ

where Iðx; y; tjBoÞ is the random instantaneous intensity at time t
and location (x,y) on the photosurface given albedo Bo. For satellite
imaging of a planetary surface under the illumination–observation
scenario described in Fig. 1, the expected value of Iðx; y; tjBoÞ is pro-
portional to the surface reflectance function Iðln;l0n;aÞ times the
incident solar flux I0 (McCluney, 1994, Chapter 1), where the latter
is assumed to be a known constant, plus the mean intensity from
atmospheric haze H. The surface reflectance function can be ex-
pressed as Iðln;l0n;aÞ ¼ Bof ðhÞ (Eq. (3)), where Bo is the random
surface albedo and h is the unknown planetary surface slope. Atmo-
spheric haze is described by a CCGR field that is independent and
additive to the CCGR field from the surface, so that the field vari-
ances, or equivalently the mean instantaneous intensities of each
add.

The probability distribution of WjBo for polarized thermal light
is given by the Gamma distribution (Goodman, 1985, Chapter 9),

PWjBoðWjBoÞ ¼ f
WBo

� 	f Wf�1 exp �f W
WBo

� 	
CðfÞ for W P 0

0 for W < 0

8><>: ð17Þ

where WBo � hWjBoi ¼
R

WPWjBoðWjBoÞdW ¼ I0½Bof ðhÞ þ H�, and H
is the expected intensity of atmospheric haze which is assumed
to be a known constant (e.g. Beyer et al., 2003). The variable f is
the number of coherence cells in the intensity average (Goodman,
1985, Chapter 6) which is equal to the squared-mean-to-variance
ratio, or Signal to Noise Ratio (SNR) of WjBo, defined as
hWjBoi2=ðhWjBo2i � hWjBoi2Þ. For example, f equals the time-band-
width product of the received field if WjBo is obtained from a finite-
time average (Makris, 1995). Additionally, f can be interpreted as
the number of stationary speckles averaged over a finite spatial
aperture in the image plane or the number of stationary multi-look
images averaged for a particular scene (Arsenault and April, 1976;
Makris, 1995).

The probability of observing K photoevents follows the condi-
tional Poisson distribution (Goodman, 1985, Chapter 9)

PKjW;BoðKjW;BoÞ ¼
KW;Bo
� �K

K!
e�KW;Bo ð18Þ

where KW;Bo ¼ bsAW . The proportionality constant b is given by
b ¼ g

h�m, where h is Planck’s constant (6.626 � 10�34 J s), �m is the mean
optical frequency of radiation, and g is the quantum efficiency that
represents the average number of photoevents produced by each
incident photon ð0 6 g 6 1Þ. From Eqs. (17) and (18), the probabil-
ity of observing K photoevents then follows the negative binomial
distribution

PKjBoðKjBoÞ ¼
Z 1

�1
PKjW ;BoðKjW;BoÞPWjBoðWjBoÞdW

¼ CðK þ fÞ
CðK þ 1ÞCðfÞ 1þ f

KBo

� ��K

1þ KBo

f

" #�f

ð19Þ

where KBo ¼ bsAWBo � c½Bof ðhÞ þ H�, and we have defined for con-
venience the proportionality constant c

c � bsAI0 ¼
g
h�m

sAI0 ð20Þ

For f� 1, the Gamma distribution of Eq. (17) approximates a
delta function (Mandel, 1959), PW jBoðWjBoÞ ¼ dðW �WBoÞ, so that
the negative binomial distribution for K (Eq. (19)) approaches a
Poisson distribution. To show this, let q ¼ KBo=f. The first cumulant
of the negative binomial distribution for K conditional on Bo is gi-
ven by k1ðKjBoÞ ¼ fq, and the rest by the recursion equation

kjþ1ðKjBoÞ ¼ qðqþ 1ÞdkjðKjBoÞ
dq

ð21Þ

so that

knðKjBoÞ ¼ f qþ
Xn

j¼2

ajqj

 !
for n P 2 ð22Þ

where the aj are constants. For thermal light at optical frequencies,
and for the common integration times of CCDs, f is very large, usu-
ally in the order of 1010, while maximum values for KBo are typically
much smaller, around 104. For f� KBo; q tends to 0 and
knðKjBoÞ � fq for all n, so that the cumulants of KjBo become equal
to those of a Poisson distributed random variable with mean
fq ¼ KBo, which is random since Bo is a random variable.

The total probability distribution for K is also approximately
Gaussian by virtue of the central limit theorem. To show this, we
first calculate the cumulants jn of the photocount K using the
law of total cumulance (Brillinger, 1969),

jnðKÞ � j1ðK1; . . . ;KnÞ ¼
X
p

j1ðk1ðKp1jBoÞ; . . . ; k1ðKpjjBoÞÞ ð23Þ

where the summation is defined over all possible partitions p of the
set f1; . . . ;ng of indices. For each partition p, sub-blocks are denoted
by p1; . . . ;pj, so that for example, if n ¼ 3 and p ¼ f2 indices;
1 indexg, the sub-blocks are p1 ¼ f½1;2�;3g; p2 ¼ f½1;3�;2g, and
p3 ¼ f½2;3�;1g. We then define K1 ¼ K2 ¼ 	 	 	 ¼ Kn ¼ K . Eq. (23) re-
duces to the well known laws of iterated expectations and total vari-
ance for n ¼ 1;2 (Bertsekas and Tsitsiklis, 2008). The cumulants for
K are given by,

j1ðKÞ ¼ hKBoi ð24Þ
j2ðKÞ ¼ hKBoi þ varðKBoÞ ð25Þ

..

.

jnðKÞ ¼ hKBoi þ bnvarðKBoÞ ð26Þ

where the bn are constants and we have made use of jjðKBoÞ ¼ 0 for
all j P 3, since Bo has been assumed to follow a Gaussian distribu-
tion with mean Bo and variance r2

Bo.
Defining a new random variable

U ¼ ðK � KÞffiffiffiffi
K

p
ð1þ Kr2

Bo=Bo2Þ1=2
ð27Þ

where K ¼ hKBoi ¼ c½Bof ðhÞ þ H�, the cumulant generating function
of U is given by
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gUð/Þ ¼ lnhe/Ui

¼ �/

ffiffiffiffi
K

p
ð1þ Kr2

Bo=Bo2Þ1=2 þ gK
/ffiffiffiffi

K
p
ð1þ Kr2

Bo=Bo2Þ1=2

 !
ð28Þ

where gKð/Þ is the cumulant generating function of K. The cumu-
lants of U are then given by

uj ¼
djgUð/Þ

d/j

�����
/¼0

¼ 1ffiffiffiffi
K

p
ð1þ Kr2

Bo=Bo2Þ1=2
h ij

�Kjd
j/

d/j

�����
/¼0

þ jjðKÞ

0@ 1A ð29Þ

so that

u1 ¼ 0 ð30Þ
u2 ¼ 1 ð31Þ

..

.

un ¼
Kð1þ cnKr2

Bo=Bo2Þffiffiffiffi
K

p
1þ Kr2

Bo=Bo2
� �1=2

h in for n P 2 ð32Þ

where the cn are constants. For very large values of K; un ap-
proaches 0 for n > 2, so that U and consequently K become Gaussian
random variables.

The discrete probability density for K is then well approximated
by the continuous Gaussian probability distribution,

PKðKjhÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rKðhÞ
exp �1

2
K � KðhÞ
rKðhÞ

" #2
0@ 1A ð33Þ

where

K ¼ c½Bof ðhÞ þ H� ð34Þ
r2

K ¼ K þ K2r2
Bo Bo2�

þ r2
R ð35Þ

are the mean and variance of K respectively, r2
R is an additive signal-

independent variance term due to CCD camera read noise, and we
define r2

haze � cH as the noise term due to the known atmospheric
haze expected intensity H.

In order to determine appropriate noise levels and the scaling
factor c, we consider as an example the HiRISE camera of the latest
Mars Reconnaissance Orbiter (MRO) mission (Bergstrom et al.,
2004; McEwen et al., 2003), where Bergstrom et al. (2004) specify
read noise rR to be roughly 80 electrons r.m.s., and imply in Fig. 12
a value for c ranging from roughly 20,000 electrons for the blue–
green and NIR bands to 70,000 electrons for the red (pan) band.
The mean photocount, K , is then on the order of 104 electrons.

A typical value for the contribution of atmospheric haze to the
total measured signal in images of Mars may be inferred from Ta-
ble I of Bridges and Herkenhoff (2002). Accounting for the gain of
Mariner’s camera (Dunne, 1970), we find that the atmospheric
haze component, r2

haze, is typically on the order of 2000 electrons,
or roughly 10% of the mean signal expected using the blue–green
HiRISE band. For albedo variability, the mean Bo is normalized to
one and the standard deviation rBo is specified as 10% of the mean
following calculations presented by Bell et al. (2008) for typical
martian surfaces. Albedo variability then results in a variance that
is on the order of 106 electrons.

The integration time or shutter speed of the HiRISE camera is
s P 76 ls and the optical bandwidth is mB � 1014 Hz or greater,
depending on the exact band used. The value of f is then in the or-
der of 1010, while K is in the order of 104, so that the negative bino-
mial distribution of Eq. (19) is well approximated by the Gaussian
distribution of Eq. (33). In this paper, we consider CCD measure-
ments in the blue–green and/or the NIR band.
Appendix B. Necessary sample sizes for an unbiased, minimum
variance estimate, and asymptotic expansions of bias and
variance

Given the likelihood function PKðKjhÞ for h given the measure-
ments K1;K2;K3; . . . ;Kn, the moments of the MLE estimate ĥ can
be expressed as series of inverse powers of the sample size n (Naf-
tali and Makris, 2001), provided that the required derivatives in an
expansion of the likelihood function exist (Shenton and Bowman,
1977). The MLE variance is then expressed as

var ĥ;n
� 	

¼ var1 ĥjh;n
� 	

þ var2 ĥjh;n
� 	

þ higher order terms

ð36Þ

where varj ĥjh;n
� 	

¼ varj ĥjh;1
� 	.

nj, so that

var ĥ;n
� 	

¼
var1 ĥjh;1

� 	
n

þ
var2 ĥjh;1

� 	
n2 þ Oðn�3Þ ð37Þ

where Oðn�3Þ represents integer powers n�3 and higher. The first
term on the right hand side, var1ðĥjh;1Þ=n is the CRLB, the asymp-
totic value of the variance when sample size n becomes large or
uncertainty becomes small. Similarly, the MLE bias can be ex-
pressed as

bias ĥ;n
� 	

¼
b1 ĥjh;1
� 	

n
þ

b2 ĥjh;1
� 	

n2 þ Oðn�3Þ ð38Þ

To simplify notation, we let varjðĥjh;1Þ � varjðĥjhÞ and
bjðĥjh;1Þ � bjðĥjhÞ.

The value of n necessary for the MLE variance to asymptotically
attain the CRLB is found by requiring the second-order variance to
be negligible compared to the first-order variance, so that

n� jvar2ðĥjhÞj
var1ðĥjhÞ

ð39Þ

Similarly, the necessary value of n for ĥ to become asymptotically
unbiased is found by requiring the first-order bias to be negligible
compared to the true value of the parameter

n� jb1ðĥjhÞj
jhj ð40Þ

Only for values of n satisfying these conditions is it possible for the
estimate to be in the asymptotic regime where it is unbiased and
continuously attains the CRLB (Naftali and Makris, 2001; Thode
et al., 2002; Zanolin et al., 2004).

For the statistical model of Eq. (33)

b1 ĥjh
� 	

¼ �1
2
ði�2Þ t1;2 þ

1
2
m1m2 þ t1;1m1

� �
ð41Þ

var1 ĥjh
� 	

¼ i�1 ð42Þ

var2 ĥjh
� 	

¼ ði�3Þ 2m4
1 � 5t1;2m1 þ 6t1;1m2

1 �
1
2
m1m3 � t1;1m2

�
�t1;3 � m2

1m2

þ ði�4Þ 7

2
t2

1;2 þ
7
2
t1;1m2

1m2 þ 7t1;1t1;2m1 þ
7
8
m2

1m
2
2

�
þ7

2
t1;2m1m2 �

11
2

t2
1;1m

2
1 � 6t1;1m4

1 � m6
1

�
ð43Þ

where

ta;b ¼
1
r2

K

@aK
@ha

@bK

@hb
ð44Þ

mc ¼
1
r2

K

@cr2
K

@hc ð45Þ

and i is the Fisher information given by Eq. (8).
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